Therapeutic and Adverse Effects of a Non-Steroidal Glucocorticoid Receptor Ligand in a Mouse Model of Multiple Sclerosis
نویسندگان
چکیده
BACKGROUND Dissociating glucocorticoid receptor (GR) ligands hold great promise for treating inflammatory disorders since it is assumed that they exert beneficial activities mediated by transrepression but avoid adverse effects of GR action requiring transactivation. Here we challenged this paradigm by investigating 2-(4-acetoxyphenyl)-2-chloro-N-methyl-ethylammonium chloride (CpdA), a dissociating non-steroidal GR ligand, in the context of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). METHODOLOGY/PRINCIPAL FINDINGS CpdA inhibited pro-inflammatory mediators in myelin-specific T cells and fibroblasts in a GR-dependent manner while gene activation was abolished. However, it also induced massive apoptosis in various cell types even in the absence of the GR by engaging a Bcl-2- and caspase-dependent pathway. (1)H NMR spectroscopy corroborated these findings by revealing that CpdA dissolved in buffered solutions rapidly decomposes into aziridine intermediates known to act as alkylating pro-apoptotic agents. Importantly, the dichotomy of CpdA action also became evident in vivo. Administration of high-dose CpdA to mice was lethal while treatment of EAE with low to intermediate amounts of CpdA dissolved in water significantly ameliorated the disease. The beneficial effect of CpdA required expression of the GR in T cells and was achieved by down regulating LFA-1 and CD44 on peripheral Th cells and by repressing IL-17 production. CONCLUSIONS/SIGNIFICANCE CpdA has significant therapeutic potential although adverse effects severely compromise its application in vivo. Hence, non-steroidal GR ligands require careful analysis prior to their translation into new therapeutic concepts.
منابع مشابه
O 3:Therapeutic Potential of a Novel NMDA Receptor Subunit 2B Antagonist in a Mouse Model of Autoimmune Neuroinflammation
Glutamate-mediated excitotoxicity and neurodegeneration have been shown as pathophysiological hallmarks of multiple sclerosis (MS) and other autoimmune inflammatory CNS disorders. N‑Methyl‑D‑Aspartate (NMDA) receptors play a pivotal role in the mediation of neuronal glutamate excitotoxicity leading to cellular damage and apoptotic cell death. Current treatment approaches targeting glutamate exc...
متن کاملThe Growth Arrest-Specific Transcript 5 (GAS5) and Nuclear Receptor Subfamily 3 Group C Member 1 (NR3C1): Novel Markers Involved in Multiple Sclerosis
Recent studies have revealed that long non-coding RNAs (lncRNAs) are connected with pathogenesis of neurodegenerative diseases. Additionally, glucocorticoids have fundamental regulatory roles on the immune system, and act as potent therapeutic compounds for autoimmune and inflammatory diseases. The long noncoding RNA growth arrest-specific 5 (GAS5) which accumulates inside the cells in response...
متن کاملInhibition of NR2B-Containing N-methyl-D-Aspartate Receptors (NMDARs) in Experimental Autoimmune Encephalomyelitis, a Model of Multiple Sclerosis
Neurodegeneration is the pathophysiological basis for permanent neurological disabilities in multiple sclerosis (MS); thus neuroprotection is emerging as a therapeutic approach in MS research. Modulation of excitotoxicity by inhibition of NMDARs has been suggested for neuroprotection, but selective antagonisation of the NR2B subtype of these receptors, a subtype believed to play a more pivotal ...
متن کاملCombination Therapy with A1 Receptor Agonist and Vitamin C Improved Working Memory in a Mouse Model of Global Ischemia-Reperfusion
Introduction: Stroke is one of the most important reasons of death. Hence, trials to prevent or lessen the complications originated by stroke are a goal of public health worldwide. The ischemia-reperfusion causes hypoxia, hypoglycemia and incomplete repel of metabolic waste products and leads to accumulation of free radicals triggering neuronal death. The A1 adenosine receptoras an endogenous l...
متن کاملPhytoestrogens: recent developments
Phytoestrogens are polyphenolic non-steroidal plant compounds with estrogen like activity exerted through estrogen receptors. These receptors are distributed in several tissues such as male and female reproductive systems, bones, cardiovascular and central nervous systems. These natural phenolic compounds include isoflavonoids, flavonoids, lignans and stilbenes. Isoflavonoids are the most studi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2009